Differential Equations: Theory and Applications, 2nd Edition by David Betounes
Book Description :-
This book presents a systematic and comprehensive introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. Detailed step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. Such a detailed, step-by-step approach, especially when applied to practical engineering problems, helps the readers to develop problem-solving skills. This book is suitable for use not only as a textbook on ordinary differential equations for undergraduate students in an engineering program but also as a guide to self-study. It can also be used as a reference after students have completed learning the subject. Ordinary differential equations arise in many different contexts including geometry, mechanics, astronomy and population modeling. Many famous mathematicians have studied differential equations and contributed to the field, including Newton, Leibniz, the Bernoulli famiy, Riccati, Clairaut, d'Alembert and Euler.Much study has been devoted to the solution of ordinary differential equations. In the case where the equation is linear, it can be solved by analytical methods. Unfortunately, most of the interesting differential equations are non-linear and, with a few exceptions, can be solved exactly
Book Details :-
Hardcover: 633 pages
Publisher: Springer; 2nd ed. edition (Nov 16 2009)
Language: English
ISBN-10: 1441911626
ISBN-13: 978-1441911629
Download Link on MediaFire (8.98MB)
0 comments:
Post a Comment